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Abstract
In this paper we introduce cohomology and homology theories for Nambu–
Poisson manifolds. Also we study the relation between the existence of a
duality for these theories and the vanishing of a particular Nambu–Poisson
cohomology class, the modular class. The case of a regular Nambu–Poisson
structure and some singular examples are discussed.

PACS numbers: 0240M, 0220, 0365, 4520J

1. Introduction

Homology and cohomology theories have been shown to be good tools in the study of Poisson
geometry, as they have been in other areas of geometry and physics. In particular, a lot of
work has been done in the study of Poisson cohomology and Poisson homology (see, for
example, [37,40]). Poisson cohomology (also known as Lichnerowicz–Poisson cohomology)
of a Poisson manifold M was introduced by Lichnerowicz [22] as the cohomology of the
subcomplex of the Chevalley–Eilenberg complex of the Lie algebra C∞(M,R) consisting of
the 1-differentiable cochains that are derivations in each argument with respect to the usual
product of functions. Poisson cohomology provides a good framework to express deformation
and quantization obstructions. On the other hand, Poisson homology (also known as canonical
homology) was defined as the homology of the operator boundary δ on differential forms
considered geometrically by Koszul [14] and algebraically by Brylinski [4] by taking the
classical limit of the Hochschild boundary operator for a quantized Poisson algebra. The notion
of Poisson (respectively, symplectic) harmonicity also appears to be very interesting. These
cohomology and homology theories can be extended to Lie algebroids, which are algebraic
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structures of great interest in mathematics and physics [27]. Lie algebroids are a generalization
of Lie algebras and tangent bundles and each Poisson manifold has associated a Lie algebroid in
a natural way. Recently, a Poincaré-type duality between cohomology and homology theories
has been proved by Evens et al [12] and Xu [41] using the modular class of the Poisson
structure [39]. Furthermore, the rotational of a Poisson structure associated with a volume
form (a representative of the modular class) has also been used as a tool for the classification
of Poisson structures [10, 18, 23].

The aim of this paper is to introduce similar cohomology and homology theories for
Nambu–Poisson structures, as well as the study of a Poincaré-type duality. The concept of a
Nambu–Poisson structure was given by Takhtajan [33] in 1994 in order to find an axiomatic
formalism for the n-bracket operation

{f1, . . . , fn} = det

(
∂fi

∂xj

)
proposed by Nambu [32] and picking up the idea that in statistical mechanics the basic result
is the Liouville theorem, which follows from but does not require Hamiltonian dynamics.
A Nambu–Poisson manifold of order n is a manifold M endowed with a skew-symmetric
n-bracket of functions { , . . . , } satisfying the Leibniz rule and the fundamental identity

{f1, . . . , fn−1, {g1, . . . , gn}} =
n∑

i=1

{g1, . . . , {f1, . . . , fn−1, gi}, . . . , gn}

for all f1, . . . , fn−1, g1, . . . , gn C∞ real-valued functions on M . Note that the n-bracket
{ , . . . , } allows us to introduce the Nambu–Poisson n-vector � characterized by the relation
�(df1, . . . , dfn) = {f1, . . . , fn}. The structure is said to be regular if � �= 0 at every
point. Recently, local and global properties of Nambu–Poisson manifolds have been studied
[1, 3, 15, 17, 20, 28, 31, 38]. The canonical example of a Nambu–Poisson structure of order
n greater than two is that induced by a volume form on an oriented manifold of dimension
n. In fact, a Nambu–Poisson manifold of order n, n � 3, admits a generalized foliation (the
characteristic foliation) whose leaves are either points or n-dimensional manifolds endowed
with a volume Nambu–Poisson structure. A strong effort is being made in order to understand
the geometry of Nambu–Poisson structures, and also to understand the Nambu mechanics (see,
for example, [5, 7, 8]).

Recently, the authors have defined in [21] the notion of a Leibniz algebroid in the same way
as for the case of a Lie algebroid but bearing in mind the concept of Leibniz algebra [24, 25].
A Leibniz algebra is a real vector space g endowed with a R-bilinear mapping { , } satisfying
the Leibniz identity

{a1, {a2, a3}} − {{a1, a2}, a3} − {a2, {a1, a3}} = 0

for a1, a2, a3 ∈ g. If the bracket is skew-symmetric we recover the notion of a Lie algebra.
In [21], it was shown that each Nambu–Poisson manifold (M,�) of order n, with n � 3, has
associated a Leibniz algebroid, consisting in the vector bundle �n−1(T ∗M) −→ M whose
space of sections �n−1(M) has a Leibniz algebra structure with bracket

[[α, β]] = L#n−1(α)β + (−1)n(i(dα)�)β

and a vector bundle homomorphism #n−1 : �n−1(T ∗M) −→ TM given by #n−1(β) = i(β)�,
which provides a Leibniz algebra homomorphism between the spaces of sections. The Leibniz
algebroid (�n−1(T ∗M), [[ , ]], #n−1) allows us to introduce the Leibniz algebroid cohomology.
However, this cohomology has infinite degrees and thus a Poincaré-type duality, with some
homology theory, is not possible.
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In this paper, in order to obtain a cohomology theory for Nambu–Poisson manifolds
without the above-mentioned problems, we begin by showing in section 3 a Lie algebra
structure associated with a Nambu–Poisson manifold (M,�). In fact, we prove that the
centre of the Leibniz algebra (�n−1(M), [[ , ]]) is the C∞(M,R)-module ker #n−1 = {α ∈
�n−1(M)/#n−1(α) = 0} and thus the quotient space �n−1(M)

ker #n−1
is a Lie algebra. Moreover, if

the Nambu–Poisson structure is regular, �n−1(M)

ker #n−1
is the space of sections of the vector bundle

�n−1(T ∗M)

ker #n−1
→ M and this is a Lie algebroid. As a consequence of the above results, we

introduce in section 4 a cohomology theory for a Nambu–Poisson manifold (M,�). The
resultant cohomology, called Nambu–Poisson cohomology, is defined as the cohomology of
the Lie algebra �n−1(M)

ker #n−1
relative to a certain representation. If the structure is regular, the

Nambu–Poisson cohomology is just the Lie algebroid cohomology of �n−1(T ∗M)

ker #n−1
→ M . So,

we can think that for a Nambu–Poisson structure there exists associated a kind of ‘singular’
Lie algebroid structure and the corresponding cohomology. Also in section 4, we observe that
the characteristic foliation of a Nambu–Poisson manifold allows us to introduce the foliated
cohomology which, in the regular case, coincides with the usual foliated cohomology defined
for regular foliations [13, 19, 35, 36]. Furthermore, in this last case, we prove that the foliated
cohomology is isomorphic to the Nambu–Poisson cohomology. After this paper was finished,
some computations of the Nambu–Poisson cohomology have been done in [29].

Section 5 is devoted to the introduction of the canonical Nambu–Poisson homology on
an oriented Nambu–Poisson manifold. If M is an oriented manifold one can consider, in
a natural way, a homology complex whose k-chains are the k-vectors on M , the homology
operator on vector fields is the divergence with respect to a volume and the resultant homology
is dual to the de Rham cohomology. The canonical Nambu–Poisson homology complex of
an oriented Nambu–Poisson manifold (M,�) is a subcomplex of this homology complex. In
fact, if (M,�) is regular, the k-chains in the canonical Nambu–Poisson homology complex
are the k-vectors on M which are tangent to the characteristic foliation.

In section 6, we study the relation between the vanishing of the modular class of an
oriented Nambu–Poisson manifold (M,�) and the existence of a duality between the homology
and cohomology theories introduced in the above sections. The modular tensor of M was
introduced independently in [9, 21]. Recently, Dufour and Zhitomirskii [11] have used this
tensor in order to give a classification of quadratic integrable 1-forms. The modular tensor
defines a cohomology class (the modular class) in the Leibniz algebroid cohomology which
is null in some neighbourhood of any regular point (see [21]). An example of a singular
Nambu–Poisson structure with non-null modular class was also exhibited in [21]. Now, if M
is an oriented regular Nambu–Poisson manifold of order n (n � 3) then, in section 6, we prove
that the modular class of M is null if and only if there exists a basic volume with respect to
the characteristic foliation. Using this result, we obtain some interesting examples of regular
Nambu–Poisson structures with non-null modular class. Next, we show that the vanishing of
the modular class implies the existence of a duality between the foliated cohomology of M
and the homology of a subcomplex of the canonical Nambu–Poisson homology complex of
M . Thus, if (M,�) is regular and there exists a basic volume with respect to the characteristic
foliation of M , we conclude that there is a duality between the Nambu–Poisson cohomology
and the canonical Nambu–Poisson homology of M .

Finally, in section 7, we study a particular example, namely, a singular Nambu–Poisson
structure of order three on R

3. We prove that there is no duality between the canonical Nambu–
Poisson homology and the Nambu–Poisson cohomology and that this last cohomology is not
isomorphic to the foliated cohomology.
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2. Preliminaries

All the manifolds considered in this paper are assumed to be connected.

2.1. Nambu–Poisson structures

Let M be a differentiable manifold of dimension m. Denote by X(M) the Lie algebra of vector
fields onM , byC∞(M,R) the algebra ofC∞ real-valued functions onM , by�k(M) the space
of k-forms on M and by Vk(M) the space of k-vectors.

A Nambu–Poisson bracket of order n (n � m) on M (see [33]) is an n-linear mapping
{ , . . . , } : C∞(M,R) × · · ·(n · · · × C∞(M,R) → C∞(M,R) satisfying the following
properties:

(1) Skew-symmetry:

{f1, . . . , fn} = (−1)ε(σ ){fσ(1), . . . , fσ(n)}
for all f1, . . . , fn ∈ C∞(M,R) and σ ∈ Symm(n), where Symm(n) is a symmetric group
of n elements and ε(σ ) is the parity of the permutation σ .

(2) Leibniz rule:

{f1g1, f2, . . . , fn} = f1{g1, f2, . . . , fn} + g1{f1, f2, . . . , fn}
for all f1, . . . , fn, g1 ∈ C∞(M,R).

(3) Fundamental identity:

{f1, . . . , fn−1, {g1, . . . , gn}} =
n∑

i=1

{g1, . . . , {f1, . . . , fn−1, gi}, . . . , gn}

for all f1, . . . , fn−1, g1, . . . , gn functions on M .

Given a Nambu–Poisson bracket, we can define a skew-symmetric tensor � of type (n, 0)
(n-vector) as follows:

�(df1, . . . , dfn) = {f1, . . . , fn}
for f1, . . . , fn ∈ C∞(M,R). The pair (M,�) is called a Nambu–Poisson manifold of order
n.

Let (M,�) be a Nambu–Poisson manifold of order n and k be an integer with k � n.
If �k(T ∗M) (respectively, �n−k(TM)) denotes the vector bundle of the k-forms

(respectively, (n − k)-vectors) then � induces a homomorphism of vector bundles #k :
�k(T ∗M) → �n−k(TM) by defining

#k(β) = i(β)�(x) (2.1)

for β ∈ �k(T ∗
x M) and x ∈ M , where i(β) is the contraction by β. Denote also by #k the

homomorphism of C∞(M,R)-modules from the space �k(M) onto the space Vn−k(M) given
by

#k(α)(x) = #k(α(x)) (2.2)

for all α ∈ �k(M) and x ∈ M .
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Remark 2.1. It is clear that the mapping #k : �k(M) → Vn−k(M) induces an isomorphism
of C∞(M,R)-modules #k : �k(M)

ker #k
→ #k(�k(M)) defined by

#k([α]) = #k(α) (2.3)

for [α] ∈ �k(M)

ker #k
.

If f1, . . . , fn−1 are n − 1 functions on M , we define a vector field

Xf1...fn−1 = #n−1(df1 ∧ · · · ∧ dfn−1) (2.4)

which is called the Hamiltonian vector field associated with the Hamiltonian functions
f1, . . . , fn−1.

From the fundamental identity, it follows that the Hamiltonian vector fields are
infinitesimal automorphisms of �, i.e.

LXf1 ...fn−1
� = 0 (2.5)

for all f1, . . . , fn−1 ∈ C∞(M,R).

Example 2.2. Let M be an oriented m-dimensional manifold and choose a volume form νM
on M . Then, we can consider the following Nambu–Poisson bracket {, . . . , } defined by the
formula

df1 ∧ · · · ∧ dfm = {f1, . . . , fm}νM.
In this case the homomorphisms #k are isomorphisms, for all k � m (see [15]).

The following theorem describes the local structure of the Nambu–Poisson brackets of
order n, with n � 3.

Theorem 2.3 (See [1, 15, 20, 28, 31]). LetM be a differentiable manifold of dimensionm. The
n-vector �, n � 3, defines a Nambu–Poisson structure on M if and only if for all x ∈ M with
�(x) �= 0, there exist local coordinates (x1, . . . , xn, xn+1, . . . , xm) around x such that

� = ∂

∂x1
∧ · · · ∧ ∂

∂xn
.

A point x of a Nambu–Poisson manifold (M,�) of order n � 3 is said to be regular if
�(x) �= 0. If every point of M is regular then the Nambu–Poisson manifold (M,�) is said to
be regular.

Let (M,�) be a Nambu–Poisson manifold of order n, with n � 3, and consider the
characteristic distribution D on M , given by

x ∈ M → D(x) = #n−1(�
n−1(T ∗

x M))

= 〈{Xf1...fn−1(x)/f1, . . . , fn−1 ∈ C∞(M,R)}〉 ⊆ TxM. (2.6)

Then, D defines a generalized foliation on M whose leaves are either points or n-dimensional
manifolds endowed with a Nambu–Poisson structure coming from a volume form (see [20]).

Remark 2.4. Let (M,�) be an m-dimensional regular Nambu–Poisson manifold of order n,
with n � 3. From theorem 2.3, we deduce.

(i) D defines a foliation on M of dimension n.
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(ii) For all k ∈ {0, . . . , n}, ker #k (respectively, #k(�k(T ∗M))) is a vector subbundle of

�k(T ∗M) → M (respectively, �n−k(TM) → M) of rank
(
m

k

)
−
(
n

k

)
(respectively,

(
n

k

)
)

and the homomorphism #k : �k(T ∗M) → �n−k(TM) induces an isomorphism of vector
bundles

#k :
�k(T ∗M)

ker #k
→ #k(�

k(T ∗M)).

The notation #k is justified by the following fact. The space of the C∞-differentiable
sections of �k(T ∗M)

ker #k
→ M (respectively, #k(�k(T ∗M)) → M) can be identified with

�k(M)

ker #k
(respectively, #k(�k(M))) in such a sense that the corresponding isomorphism of

C∞(M,R)-modules induced by #k is just the mapping #k : �k(M)

ker #k
→ #k(�k(M)) given

by (2.3).
(iii) The C∞-differentiable sections of the vector bundle #k(�k(T ∗M)) → M are the (n− k)-

vectors on M which are tangent to D. We recall that an (n− k)-vector P on M is tangent
to D if

i(α(x))(P (x)) = 0

for all x ∈ M and for all α(x) ∈ D0(x), where D0(x) is the annihilator of D(x) in T ∗
x M .

Note that D0(x) = ker(#1|T ∗
x M

), for all x ∈ M .

2.2. The Leibniz algebroid associated with a Nambu–Poisson structure

In [21] we have introduced the notion of a Leibniz algebroid, a natural generalization of
the notion of a Lie algebroid, and we have proved that every Nambu–Poisson manifold has
associated a canonical Leibniz algebroid. Next, we will describe this structure.

First, we recall the definition of real Leibniz algebra (see [6, 24–26]). A Leibniz algebra
structure on a real vector space g is a R-bilinear map { , } : g × g → g satisfying the Leibniz
identity, that is,

{a1, {a2, a3}} − {{a1, a2}, a3} − {a2, {a1, a3}} = 0

for a1, a2, a3 ∈ g. In such a case, the pair (g, { , }) is called a Leibniz algebra.
Moreover, if the skew-symmetric condition is required then (g, { , }) is a Lie algebra. In

this sense, a Leibniz algebra is a non-commutative version of a Lie algebra.
The notion of Leibniz algebroid can be introduced in the same way as that of Lie algebroid.

Definition 2.5. A Leibniz algebroid structure on a differentiable vector bundle π : E → M is
a pair that consists of a Leibniz algebra structure [[ , ]] on the space �(E) of the global cross
sections of π : E −→ M and a vector bundle morphism  : E → TM , called the anchor map,
such that the induced map  : �(E) −→ �(TM) = X(M) satisfies the following relations:

(a)  [[s1, s2]] = [ (s1),  (s2)],
(b) [[s1, f s2]] = f [[s1, s2]] +  (s1)(f )s2

for all s1, s2 ∈ �(E) and f ∈ C∞(M,R).
A triple (E, [[ , ]],  ) is called a Leibniz algebroid over M .

Every Lie algebroid over a manifold M is trivially a Leibniz algebroid. In fact, a Leibniz
algebroid (E, [[ , ]],  ) overM is a Lie algebroid if and only if the Leibniz bracket [[ , ]] on�(E)
is skew-symmetric.



Duality and modular class of a Nambu–Poisson structure 3629

Now, let (M,�) be a Nambu–Poisson manifold of order n, n � 3, and L the Lie derivative
operator onM . The Leibniz algebroid attached toM is just the triple (�n−1(T ∗M), [[ , ]], #n−1),
where [[ , ]] : �n−1(M) × �n−1(M) → �n−1(M) is the bracket of (n − 1)-forms defined by

[[α, β]] = L#n−1(α)β + (−1)n#n(dα)β (2.7)

for all α, β ∈ �n−1(M). In particular, we have that

#n−1([[α, β]]) = [#n−1(α), #n−1(β)] (2.8)

for all α, β ∈ �n−1(M).
Moreover, in [21] it was proved that the only non-null Nambu–Poisson structures of order

greater than two on an oriented manifold M of dimension m such that its Leibniz algebroid is
a Lie algebroid are those defined by non-null m-vectors.

Let (E, [[ , ]],  ) be a Leibniz algebroid over a manifold M . For every k ∈ N, we consi-
der the vector space

Ck(�(E);C∞(M,R)) = {ck : �(E) × · · ·(k · · · × �(E) → C∞(M,R)/ck is k-linear}
and the operator ∂ : Ck(�(E);C∞(M,R)) → Ck+1(�(E);C∞(M,R)) defined by

∂ck(s0, . . . , sk) =
k∑

i=0

(−1)i (si)(c
k(s0, . . . , ŝi , . . . , sk))

+
∑

0�i<j�k

(−1)i−1ck(s0, . . . , ŝi , . . . , sj−1, [[si, sj ]], sj+1, . . . , sk)

for ck ∈ Ck(�(E);C∞(M,R)) and s0, . . . , sk ∈ �(E).
Then, it follows that ∂2 = 0. The resultant cohomology is called the Leibniz algebroid

cohomology ofE. This cohomology also can be described as that defined by the representation

�(E) × C∞(M,R) → C∞(M,R) (s, f ) �→  (s)(f ).

The definition of the cohomology of a Leibniz algebra relative to a representation can be found
in [24–26].

Note that if ck ∈ Ck(�(E);C∞(M,R)) is skew-symmetric (respectively, C∞(M,R)-
linear) then, in general, ∂ck is not skew-symmetric (respectively, C∞(M,R)-linear) (for more
details, see [21]).

Nevertheless, if (E, [[ , ]],  ) is a Lie algebroid and ck ∈ Ck(�(E);C∞(M,R)) is skew-
symmetric and C∞(M,R)-linear then ∂ck is also skew-symmetric and C∞(M,R)-linear.
Thus, in this case, we can consider the subcomplex of (C∗(�(E);C∞(M,R)), ∂∗) that consists
of the skew-symmetric C∞(M,R)-linear cochains. The cohomology of this subcomplex is
just the Lie algebroid cohomology of E (see [27]).

Remark 2.6. Let (M,�) be a Nambu–Poisson manifold of order n, with n � 3, and
(�n−1(T ∗M), [[ , ]], #n−1) the corresponding Leibniz algebroid. Now, the Leibniz algebroid
cohomology operator is given by

∂ck(α0, . . . , αk) =
k∑

i=0

(−1)i#n−1(αi)(c
k(α0, . . . , α̂i , . . . , αk))

+
∑

0�i<j�k

(−1)i−1ck(α0, . . . , α̂i , . . . , αj−1, [[αi, αj ]], αj+1, . . . , αk) (2.9)

for all ck ∈ Ck(�n−1(M);C∞(M,R)) and α0, . . . , αk ∈ �n−1(M).
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3. A Lie algebra associated with a Nambu–Poisson manifold

If (g, [ , ]) is a Leibniz algebra, we define its centre, Z(g), as the kernel of the adjoint
representation

ad : g → End (g) x �→ [x, · ].

It is easy to prove that g/Z(g) endowed with the induced bracket is a Lie algebra (see [6]).
In the particular case of a Nambu–Poisson manifold (M,�) of order n � 3, we have that

the centre of the Leibniz algebra (�n−1(M), [[ , ]]) is the space

Z(�n−1(M)) = {α ∈ �n−1(M) / [[α, β]] = 0, ∀β ∈ �n−1(M)}

and that (�n−1(M)/Z(�n−1(M)), [[, ]]̃ ) is a Lie algebra, where

[[ , ]]̃ : �n−1(M)/Z(�n−1(M)) × �n−1(M)/Z(�n−1(M)) → �n−1(M)/Z(�n−1(M))

is the bracket given by

[[[α], [β]]]̃ = [[[α, β]]] (3.1)

for all [α], [β] ∈ �n−1(M)/Z(�n−1(M)).
The next result gives an explicit description of the centre of (�n−1(M), [[ , ]]).

Proposition 3.1. Let (M,�) be an m-dimensional Nambu–Poisson manifold of order n, with
n � 3. Then, the centre of the algebra (�n−1(M), [[ , ]]) is the C∞(M,R)-module

ker #n−1 = {α ∈ �n−1(M)/#n−1(α) = 0}.

Proof. If α is an (n − 1)-form on M such that #n−1(α) = 0 then, from (2.7), it follows that

[[α, β]] = (−1)n#n(dα)β (3.2)

for all β ∈ �n−1(M).
On the other hand, using a result proved in [21] (see relation (3.3) in [21]), we have that

0 = L#n−1(α)� = (−1)n#n(dα)�.

Thus, we deduce that #n(dα) = 0. Consequently, [[α, β]] = 0 (see (3.2)).
Conversely, suppose that α is an (n − 1)-form on M such that

[[α, β]] = 0 for all β ∈ �n−1(M). (3.3)

In order to prove that #n−1(α)(x) = 0, for all x ∈ M , we distinguish two cases.

(i) If �(x) = 0, it is obvious that #n−1(α)(x) = 0.
(ii) If �(x) �= 0 then, using theorem 2.3, we have that there exist local coordinates

(x1, . . . , xn, xn+1, . . . , xm) in a connected open neighbourhood U of x such that

� = ∂

∂x1
∧ · · · ∧ ∂

∂xn
. (3.4)
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Now, the (n − 1)-form α on U can be written as follows:

α =
n∑

i=1

(−1)n−iαi dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn + α′ (3.5)

where αi ∈ C∞(U,R) and α′ is an (n − 1)-form on U satisfying the condition #n−1(α
′) = 0.

Note that on U

#n−1(α) =
n∑

i=1

αi
∂

∂xi
. (3.6)

On the other hand, from (2.8), (3.3), (3.4) and (3.6), we obtain that, for all j ∈ {1, . . . , n},

0 = #n−1([[α, (−1)n−j dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxn]]) =
[

#n−1(α),
∂

∂xj

]
= −

n∑
i=1

∂αi

∂xj

∂

∂xi
.

Consequently,

∂αi

∂xj
= 0 for all i, j ∈ {1, . . . , n}. (3.7)

This implies that (see (3.4) and (3.5)) on U , we have

#n(dα) = 0. (3.8)

Moreover, we shall see that dαi = 0, for all i ∈ {1, . . . , n}. Indeed, consider the (n−1)-forms
β = dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxn, for all j . Since [[α, β]] = 0, using (3.6) and (3.8), we obtain

0 = [[α, β]] = L#n−1(α)β =
n∑

i=1

dαi ∧ i

(
∂

∂xi

)
(dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxn).

Thus, ∂αi
∂xk

= 0 for all k ∈ {n + 1, . . . , m} and for all i ∈ {1, . . . , n}. This fact and (3.7) imply
that dαi = 0, that is, αi is a real constant, for all i ∈ {1, . . . , n}.

Next, we will prove that αi = 0 for all i ∈ {1, . . . , n}. We consider the (n − 1)-form β ′

on U given by

β ′ = xj dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxn.

Using (2.7), (3.6), (3.8) and the fact that αi is constant, we have that

0 = [[α, β ′]] = αj dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxn.

Therefore,

αj = 0 for all j ∈ {1, . . . , n}.
Finally, from (3.6) we conclude that #n−1(α) = 0 on U . In particular,

#n−1(α)(x) = 0. �

Hence, if (M,�) is an m-dimensional Nambu–Poisson manifold of order n, the quotient
space

�n−1(M)/Z(�n−1(M)) = �n−1(M)/ ker #n−1
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is a C∞(M,R)-module endowed with a skew-symmetric bracket [[ , ]]̃ given by (3.1) which
satisfies the Jacobi identity and the following property:

[[[α], f [β]]]̃ = f [[[α], [β]]]̃ + #n−1(α)(f )[β] (3.9)

for all [α], [β] ∈ �n−1(M)/ ker #n−1 and f ∈ C∞(M,R).
Furthermore, using (2.8) we obtain that the mapping #̃n−1 : �n−1(M)/ ker #n−1 → X(M)

defined by

#̃n−1([α]) = #n−1(α) (3.10)

induces a homomorphism of Lie algebras between (�n−1(M)/ ker #n−1, [[ , ]]̃ ) and (X(M),
[ , ]).

Remark 3.2. Let (M,�) be a regular Nambu–Poisson manifold of order n, with n � 3.

(i) Using the above facts and remark 2.4, we deduce that the triple(
�n−1(T ∗M)

ker #n−1
, [[ , ]]̃ , #̃n−1

)
is a Lie algebroid over M .

(ii) If F is a foliation on a manifoldN and F = ⋃
x∈N F(x) → N is the corresponding vector

subbundle of TN then the triple (F, [ , ], i) is a Lie algebroid over N , where [, ] is the
usual Lie bracket of vector fields and i : F → TN is the inclusion.

(iii) If D is the characteristic foliation of M , then the Lie algebroids (
⋃

x∈M D(x) =
#n−1(�

n−1(T ∗M)), [ , ], i), (�
n−1(T ∗M)

ker #n−1
, [[ , ]]̃ , #̃n−1) are isomorphic (see remark 2.4).

4. The Nambu–Poisson cohomology and the foliated cohomology

Let (M,�) be a Nambu–Poisson manifold of order n, n � 3. According to the precedent
section, the quotient space �n−1(M)

ker #n−1
endowed with the bracket [[ , ]]̃ given by (3.1) is a Lie

algebra.
Moreover, using (2.8), we deduce that C∞(M,R) is a (�n−1(M)/ ker #n−1)-module

relative to the representation:

�n−1(M)/ ker #n−1 × C∞(M,R) → C∞(M,R) ([α], f ) �→ [α]f = (#n−1(α))(f ).

Thus, one can consider the skew-symmetric cohomology complex(
C∗(�n−1(M)/ ker #n−1;C∞(M,R)) =

⊕
k

Ck(�n−1(M)/ ker #n−1;C∞(M,R)), ∂̃

)
where the space of the k-cochains Ck(�n−1(M)/ ker #n−1;C∞(M,R)) consists of skew-
symmetric C∞(M,R)-linear mappings

ck : (�n−1(M)/ ker #n−1) × · · ·(k · · · × (�n−1(M)/ ker #n−1) → C∞(M,R)

and the cohomology operator ∂̃ is given by

∂̃ck([α0], . . . , [αk]) =
k∑

i=0

(−1)i(#n−1(αi))(c
k([α0], . . . , [̂αi], . . . , [αk]))

+
∑

0�i<j�k

(−1)i−1ck([α0], . . . , [̂αi], . . . , [αj−1], [[[αi, αj ]]], [αj+1], . . . , [αk])

(4.1)



Duality and modular class of a Nambu–Poisson structure 3633

for all ck ∈ Ck(�n−1(M)/ ker #n−1;C∞(M,R)), and [α0], . . . , [αk] ∈ �n−1(M)

ker #n−1
.

The cohomology of this complex is called the Nambu–Poisson cohomology and denoted
by H ∗

NP (M).

Remark 4.1. Let (M,�) be a Nambu–Poisson manifold of order n, n � 3. Consider
(C∗(�n−1(M);C∞(M,R)), ∂) the cohomology complex associated with the Leibniz algebroid
(�n−1(T ∗M), [[ , ]], #n−1). The natural projection p : �n−1(M) → �n−1(M)

ker #n−1
allows us to define

the homomorphisms of C∞(M,R)-modules

pk : Ck(�n−1(M)/ ker #n−1;C∞(M,R)) → Ck(�n−1(M);C∞(M,R)) ck �→ pk(ck)

pk(ck) : �n−1(M) × · · ·(k · · · × �n−1(M) → C∞(M,R) being the mapping given by

pk(ck)(α1, . . . , αk) = ck([α1], . . . , [αk]).

A direct computation, using (2.9) and (4.1), proves that these homomorphisms induce
a homomorphism between the complexes (C∗(�n−1(M)/ ker #n−1; C∞(M; R)), ∂̃) and
(C∗(�n−1(M);C∞(M,R)), ∂). Therefore, we have the corresponding homomorphism in
cohomology

p∗ : H ∗
NP (M) → H ∗(�n−1(M);C∞(M,R)).

Moreover, since the space of 0-cochains in both complexes is C∞(M,R), then

p1 : H 1
NP (M) → H 1(�n−1(M);C∞(M,R))

is a monomorphism.

Now, using the isomorphism of C∞(M,R)-modules

#n−1 : �n−1(M)/ ker #n−1 → #n−1(�
n−1(M)) #n−1([α]) = #n−1(α) (4.2)

we will relate the Nambu–Poisson cohomology with the foliated cohomology of (M,D), where
D is the characteristic foliation of M .

The foliated cohomology of (M,D) is defined as follows. We consider the space
�k(M,D) of the k-forms α on M such that

α(X1, . . . , Xk) = 0, for all X1, . . . , Xk ∈ #n−1(�
n−1(M)).

From (2.8), it follows that if α ∈ �k(M,D) then dα ∈ �k+1(M,D). Now, denote by �k(D)

theC∞(M,R)-module �k(M)

�k(M,D)
. Then, the exterior differential induces a cohomology operator

d̃ : �k(D) → �k+1(D)

d̃([α]) = [dα] for [α] ∈ �k(D). (4.3)

The resultant cohomology H ∗(D) is called the foliated cohomology of (M,D) and the
operator d̃ is called the foliated differential of (M,D). Note that if M is a regular Nambu–
Poisson manifold, H ∗(D) is just the usual foliated cohomology of (M,D) (see [13,19,35,36]).

On the other hand, we have:

Proposition 4.2. Let (M,�) be a Nambu–Poisson manifold of order n, with n � 3. Then,

�k(M,D) = ker #k

for all k ∈ {0, . . . , n}. Thus,

#k+1(dα) = 0

for all α ∈ ker #k .



3634 R Ibáñez et al

Proof. Suppose that α ∈ �k(M,D). We will prove that #k(α)(x) = 0, for all x ∈ M .
We distinguish two cases.

(i) If �(x) = 0, it is clear that #k(α)(x) = 0.
(ii) If �(x) �= 0 then, using theorem 2.3, we deduce that there exist local coordinates

(x1, . . . , xn, xn+1, . . . , xm) in an open neighbourhood U of x such that

� = ∂

∂x1
∧ · · · ∧ ∂

∂xn
.

Now, we consider an (n − 1)-form βi on M satisfying

#n−1(βi)(x) = ∂

∂xi |x

for all i ∈ {1, . . . , n}. Since α ∈ �k(M,D), it follows that

α(#n−1(βi1), . . . , #n−1(βik )) = 0

for all 1 � i1 < · · · < ik � n. Thus,

αx

(
∂

∂xi1 |x
, . . . ,

∂

∂xik |x

)
= 0.

This implies that #k(α)(x) = 0. Therefore, �k(M,D) ⊆ ker #k .
The proof of the inclusion ker #k ⊆ �k(M,D) is similar, using again theorem 2.3. �

In order to relate the Nambu–Poisson cohomology of a Nambu–Poisson manifold (M,�)

of order n, n � 3, with the foliated cohomology of (M,D), we introduce the monomorphisms
of C∞(M,R)-modules

ĩk : �k(D) → Ck(�n−1(M)/ ker #n−1;C∞(M,R)) [α] �→ ĩk([α]) = ψα (4.4)

whereψα : �n−1(M)/ ker #n−1×· · ·(k · · ·×�n−1(M)/ ker #n−1 → C∞(M,R) is the mapping
given by

ψα([α1], . . . , [αk]) = α(#n−1([α1]), . . . , #n−1([αk])). (4.5)

A direct computation, using (2.8), (4.1), (4.3)–(4.5), proves that

ĩk+1 ◦ d̃ = ∂̃ ◦ ĩk .
Hence, the mappings ĩk induce a monomorphism between the complexes (�∗(D), d̃) and
(C∗(�n−1(M)/ ker #n−1;C∞(M,R)), ∂̃).

We will denote by

ĩk : Hk(D) → Hk
NP (M)

the corresponding homomorphism in cohomology.

Remark 4.3. Let (M,�) be a regular Nambu–Poisson manifold of order n, with n � 3.

(i) The triple (�
n−1(T ∗M)

ker #n−1
, [[ , ]]̃ , #̃n−1) is a Lie algebroid over M (see remark 3.2) and the Lie

algebroid cohomology is just the Nambu–Poisson cohomology.
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(ii) Let F be a foliation on a manifoldN andF = ⋃
n∈N F(x) → N the corresponding vector

subbundle of TN . Then, the mapping

πk : �k(F) = �k(N)

�k(N,F)
→ Ck(�(F );C∞(N,R))

defined by

πk[α](X1, . . . , Xk) = α(X1, . . . , Xk)

for all [α] ∈ �k(F ) and X1, . . . , Xk ∈ �(F) is an isomorphism of C∞(N,R)-modules.
This isomorphism induces an isomorphism between the foliated cohomology of (N,F)

and the Lie algebroid cohomology of (F, [ , ], i), i : F → TN being the natural inclusion.

Using remarks 2.4 and 4.3, we deduce the following result:

Theorem 4.4. Let (M,�) be a regular Nambu–Poisson manifold of order n, with n � 3.
Then, the homomorphisms of C∞(M,R)-modules

ĩk : �k(D) → Ck

(
�n−1(M)

ker #n−1
;C∞(M,R)

)
induce an isomorphism of complexes ĩ∗ : (�∗(D), d̃) → (C∗(�

n−1(M)

ker #n−1
;C∞(M,R)), ∂̃). Thus,

the Nambu–Poisson cohomology of M is isomorphic to the foliated cohomology of (M,D),
that is,

Hk(D) ∼= Hk
NP (M) for all k.

5. A homology associated with an oriented Nambu–Poisson manifold

Let M be an m-dimensional oriented manifold and ν be a volume form on M . Denote by
,ν : Vk(M) → �m−k(M) the isomorphism of C∞(M,R)-modules given by

,ν(P ) = i(P )ν (5.1)

for all P ∈ Vk(M).
Using this isomorphism and the exterior differential d we can define a homology operator

δν as follows:

δν = ,−1
ν ◦ d ◦ ,ν : Vk(M) → Vk−1(M). (5.2)

Note that

δν(X) = divνX (5.3)

for X ∈ X(M), where divνX is the divergence of the vector field X with respect to ν, that is,
the C∞-real valued function on M which satisfies

LXν = (divνX)ν. (5.4)

The homology associated with the complex (V∗(M), δν) is denoted by Hν
∗ (M) and it is

dual of the de Rham cohomology of M , that is,

Hν
k (M) ∼= Hm−k

dR (M)

where H ∗
dR(M) is the de Rham cohomology of M . Therefore, Hν

∗ (M) does not depend of the
chosen volume form.

In order to obtain an explicit expression of the operator δν , we will prove the following
lemma which will be useful in the following.
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Lemma 5.1. Let M be an m-dimensional oriented manifold and ν be a volume form on M .
Then, for all P ∈ Vk(M) and X ∈ X(M), we have

LX,ν(P ) = ,ν(LXP ) + (divν X),ν(P ). (5.5)

Proof. If k = 0 or 1, relation (5.5) follows using (5.1), (5.4) and the properties of the Lie
derivative operator.

Proceeding by induction on k, we deduce that (5.5) holds for a decomposable k-vector.
This concludes the proof. �

Now, using this result we prove the following:

Proposition 5.2. Let M be an m-dimensional oriented manifold and ν be a volume form on
M . Then

i(α)δν(P ) = divν(i(α)(P )) + (−1)ki(dα)P (5.6)

for all P ∈ Vk(M) and α ∈ �k−1(M).

Proof. We will proceed by induction on k.
If k = 1, equation (5.6) is an immediate consequence of (5.3) and (5.4).
Next, we will assume that (5.6) is true for P ∈ Vk−1(M) and α ∈ �k−2(M) and we will

prove that (5.6) also holds for a decomposable k-vector P ,

P = X1 ∧ · · · ∧ Xk

with X1, . . . , Xk ∈ X(M). From (5.2),

d(,ν(P )) = d(i(Xk)(,ν(X1 ∧ · · · ∧ Xk−1)))

= LXk
,ν(X1 ∧ · · · ∧ Xk−1) − i(Xk),ν(δν(X1 ∧ · · · ∧ Xk−1)). (5.7)

Now, using the induction hypothesis, we have

i(β)(δν(X1 ∧ · · · ∧ Xk−1)) =
k−1∑
j=1

(−1)j+k−1 divν(β(X1, . . . , X̂j , . . . , Xk−1)Xj )

+(−1)k−1 dβ(X1, . . . , Xk−1) (5.8)

for all β ∈ �k−2(M). Thus, one deduces that

(−1)k−1δν(X1 ∧ · · · ∧ Xk−1) =
k−1∑
j=1

(−1)j (divν(Xj ))X1 ∧ · · · ∧ X̂j ∧ · · · ∧ Xk−1

+
∑

1�i<j�k−1

(−1)i+j [Xi,Xj ] ∧ X1 ∧ · · · ∧ X̂i ∧ · · · ∧ X̂j ∧ · · · ∧ Xk−1. (5.9)

Substituting (5.9) into (5.7) and using lemma 5.1, we obtain that

(−1)kd(,ν(P )) = ,ν

(
k∑

i=1

(−1)i(divν Xi)X1 ∧ · · · ∧ X̂i ∧ · · · ∧ Xk

+
∑

1�i<j�k

(−1)i+j [Xi,Xj ] ∧ X1 · · · ∧ X̂i ∧ · · · ∧ X̂j · · · ∧ Xk

)
.
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Consequently,

(−1)kδν(P ) =
k∑

i=1

(−1)i(divν(Xi))X1 ∧ · · · ∧ X̂i ∧ · · · ∧ Xk

+
∑

1�i<j�k

(−1)i+j [Xi,Xj ] ∧ X1 ∧ · · · ∧ X̂i ∧ · · · ∧ X̂j ∧ · · · ∧ Xk. (5.10)

On the other hand, for all α ∈ �k−1(M), one has

(−1)k divν(i(α)(P )) + i(dα)(P ) =
k∑

i=1

(−1)iα(X1, . . . , X̂i , . . . , Xk) divν Xi

+
∑

1�i<j�k

(−1)i+jα([Xi,Xj ], X1, . . . , X̂i , . . . , X̂j , . . . , Xk). (5.11)

Therefore, from (5.10) and (5.11), we conclude that (5.6) holds for P = X1 ∧ · · · ∧ Xk

and for all α ∈ �k−1(M). Finally, using this result, it is easy to prove that (5.6) holds for all
P ∈ Vk(M) and for all α ∈ �k−1(M). �

In the following, we will describe an interesting subcomplex of the complex (V∗(M), δν)

when M is a Nambu–Poisson manifold.
Let (M,�) be an m-dimensional Nambu–Poisson manifold of order n, with n � 3. For

all k ∈ {1, . . . , n}, we consider the subspace of Vk(M) given by

Vk
t (M,�) = {P ∈ Vk(M)/i(α)(P ) = 0, for all α ∈ �1(M), α ∈ ker #1}.

We will assume that V0
t (M,�) = C∞(M,R).

Note that if M is a regular Nambu–Poisson manifold, Vk
t (M,�) is just the space of the

k-vectors on M which are tangent to the characteristic foliation (see remark 2.4). Thus,

Lemma 5.3. Let M be a regular Nambu–Poisson manifold of order n, with n � 3. Then

Vk
t (M,�) = #n−k(�

n−k(M)) (5.12)

for all k ∈ {0, . . . , n}.
Remark 5.4. If M is an arbitrary Nambu–Poisson manifold of order n, with n � 3, we have
that

#n−k(�
n−k(M)) ⊆ Vk

t (M,�) for all k ∈ {0, . . . , n}.
However, in general, equation (5.12) does not hold as shown by the following simple example.
Suppose thatM is an oriented manifold of dimensionm � 3 and that ν is a volume form onM .
Suppose also that f is a C∞-real valued function on M such that f −1(0) is a finite subset of
M , f −1(0) �= ∅. Denote by �ν the regular Nambu–Poisson structure induced by the volume
form ν. Then, the m-vector � = f�ν defines a singular Nambu–Poisson structure of order m
onM . Moreover, a direct computation proves that Vk

t (M,�) = Vk(M) for all k ∈ {0, . . . , m}.
On the other hand, it is clear that if P ∈ #m−k(�

m−k(M)) and x ∈ f −1(0) then P(x) = 0.
Thus,

#n−k(�
n−k(M)) �= Vk

t (M,�) = Vk(M)

for all k ∈ {0, . . . , m}.
Next, we will prove that if M is an oriented Nambu–Poisson manifold of order n, with

n � 3, and ν is a volume form on M then (V∗
t (M,�) = ⊕

k=1,...,n Vk
t (M,�)) is a subcomplex

of the complex (V∗(M), δν).
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Proposition 5.5. Let (M,�) be an oriented Nambu–Poisson manifold of order n, with n � 3,
and ν be a volume form on M . Then

δν(Vk
t (M,�)) ⊆ Vk−1

t (M,�)

for all k ∈ {1, . . . , n}.

Proof. Let α be an 1-form on M such that α ∈ ker #1. If P ∈ Vk
t (M,�) then, from (5.6), we

have

i(α)δν(P )(α1, . . . , αk−2) = divν(i(α ∧ α1 ∧ · · · ∧ αk−2)(P ))

+(−1)ki(d(α ∧ α1 ∧ · · · ∧ αk−2)(P )) (5.13)

for all α1, . . . , αk−2 ∈ �1(M).
Since α ∈ ker #1 and P ∈ Vk

t (M,�), we obtain that

i(α ∧ α1 ∧ · · · ∧ αk−2)(P ) = i(α1 ∧ · · · ∧ αk−2)(i(α)(P )) = 0

i(d(α ∧ α1 ∧ · · · ∧ αk−2))(P )

= i(α1 ∧ · · · ∧ αk−2)(i(dα)(P )) − i(d(α1 ∧ · · · ∧ αk−2))(i(α)(P ))

= i(α1 ∧ · · · ∧ αk−2)(i(dα)(P )).

(5.14)

Next, we will see that i(dα)(P ) = 0, which proves that δν(P ) ∈ Vk−1
t (M,�) (see (5.13)

and (5.14)).
It is clear that the k-vector P induces two skew-symmetric C∞(M,R)-linear mappings

P̃ :
�1(M)

ker #1
× · · ·(k · · · × �1(M)

ker #1
→ C∞(M,R)

P : #1(�
1(M)) × · · ·(k · · · × #1(�

1(M)) → C∞(M,R)

in such a way that

P(α1, . . . , αk) = P̃ ([α1], . . . , [αk]) = P(#1(α1), . . . , #1(αk)) (5.15)

for all α1, . . . , αk ∈ �1(M). Moreover, it is easy to prove that P is a local operator, that is, if
U is an open subset of M and Q1 ∈ #1(�

1(M)) is such that (Q1)|U ≡ 0 then

P(Q1,Q2, . . . ,Qk)|U ≡ 0

for all Q2, . . . ,Qk ∈ #1(�
1(M)).

Now, denote by R the set of the regular points of �

R = {x ∈ M/�(x) �= 0}.
R and its exterior, Ext(R), are open subsets of M . Furthermore, it is obvious that

P(#1(α1), . . . , #1(αk))|Ext(R) ≡ 0

for all α1, . . . , αk ∈ �1(M). Thus, from (5.15), we deduce that

P(y) = 0 for all y ∈ Ext(R).

This implies that

i(dα)(P )| Ext(R) ≡ 0. (5.16)
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On the other hand, the n-vector � induces a regular Nambu–Poisson structure of order n on
R. Therefore, from lemma 5.3, we obtain that there exists an (n − k)-form β on R such that

#n−k(β(y)) = P(y) for all y ∈ R.

Consequently, if y ∈ R

i(dα(y))(P (y)) = i(β(y))(#2(dα(y)))

and by proposition 4.2, it follows that

i(dα)(P )|R ≡ 0. (5.17)

Finally, from (5.16), (5.17) and by continuity, we conclude that i(dα)(P ) = 0. �

Let (M,�) be an oriented Nambu–Poisson manifold of order n, with n � 3, and ν be a
volume form on M . Then, proposition 5.5 allows us to introduce the homology complex

· · · −→ Vk+1
t (M,�)

δν−→ Vk
t (M,�)

δν−→ Vk−1
t (M,�) −→ · · ·

This complex is called the canonical Nambu–Poisson complex of (M,�). The homology of
this complex is denoted by H canNP

∗ (M) and is called the canonical Nambu–Poisson homology
of M .

Proposition 5.6. Let (M,�) be an oriented Nambu–Poisson manifold of order n, with n � 3.
The canonical Nambu–Poisson homology does not depend on the chosen volume form.

Proof. If ν and ν ′ are two volume forms on M then there exists a C∞ real-valued function f

on M such that f �= 0 at every point and

ν ′ = f ν. (5.18)

We can suppose, without the loss of generality, that f > 0.
Define the isomorphisms of C∞(M,R)-modules

2k : Vk
t (M,�) → Vk

t (M,�)

P �→ 1

f
P

for all k ∈ {0, . . . , n}. A direct computation, using (5.1), (5.2) and (5.18), proves that

δν ′ ◦ 2k = 2k−1 ◦ δν. (5.19)

Hence, the mappings 2k induce an isomorphism of complexes

2∗ : (V∗
t (M,�), δν) → (V∗

t (M,�), δν ′). �
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6. Duality and the modular class of a Nambu–Poisson manifold

6.1. The modular class of a Nambu–Poisson manifold

Next, we will study when there exists a duality between the canonical Nambu–Poisson
homology and the Nambu–Poisson cohomology of a Nambu–Poisson manifold (M,�). A
fundamental tool in this study is the modular class of (M,�) which was introduced in [21].
We recall its definition.

Let (M,�) be an oriented m-dimensional Nambu–Poisson manifold of order n, with
n � 3, and ν be a volume form on M .

Consider the mapping Mν
� : C∞(M,R)×· · ·(n−1 · · ·×C∞(M,R) → C∞(M,R) defined

by

Mν
�(f1, . . . , fn−1) = divν(Xf1...fn−1) (6.1)

for all f1, . . . , fn−1 ∈ C∞(M,R). Then Mν
� is a skew-symmetric (n − 1)-linear mapping

and a derivation in each argument with respect to the usual product of functions. Thus, Mν
�

induces an (n − 1)-vector on M which we also denote by Mν
�.

Moreover, the mapping

Mν
� : �n−1(M) → C∞(M,R) α �→ i(α)Mν

� (6.2)

defines a 1-cocycle in the Leibniz cohomology complex associated with the Leibniz algebroid
(�n−1(T ∗M), [[ , ]], #n−1) and its cohomology class M� = [Mν

�] ∈ H 1(�n−1(M);
C∞(M,R)) does not depend on the chosen volume form. This cohomology class is called the
modular class of (M,�).

The following result proves that the (n − 1)-vector Mν
� defines also a 1-cocycle in the

Nambu–Poisson cohomology complex.

Proposition 6.1. Let (M,�) be an orientedm-dimensional Nambu–Poisson manifold of order
n, with n � 3, and ν be a volume form on M . Then, the mapping

M̃ν
� : �n−1(M)/ ker #n−1 → C∞(M,R) [α] �→ i(α)Mν

� (6.3)

defines a 1-cocycle in the Nambu–Poisson cohomology complex of (M,�). Moreover, the
cohomology class M̃� = [M̃ν

�] ∈ H 1
NP (M) does not depend on the chosen volume form.

Proof. Let α be an (n − 1)-form on M . Then, using proposition 5.2, we have

divν(#n−1(α)) = i(α)δν(�) + (−1)n−1#n(dα). (6.4)

Now, from (2.4), (6.1) and proposition 5.2, it follows that

Mν
� = δν(�). (6.5)

Thus, using (6.4), (6.5) and proposition 4.2, we deduce that the mapping M̃ν
� is well defined.

On the other hand, since Mν
� defines a 1-cocycle in the Leibniz cohomology complex

associated with the Leibniz algebroid (�n−1(T ∗M), [[ , ]], #n−1) then

i([[α, β]])Mν
� = #n−1(α)(i(β)Mν

�) − #n−1(β)(i(α)Mν
�)

for all α, β ∈ �n−1(M). Therefore, we conclude that (see (4.1)),

∂̃M̃ν
�([α], [β]) = #n−1(α)(i(β)Mν

�) − #n−1(β)(i(α)Mν
�) − i([[α, β]])Mν

� = 0.

Finally, since the modular class of M does not depend on the chosen volume form, we
deduce that the same is true for the cohomology class M̃� ∈ H 1

NP (M). �
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Remark 6.2. Let (M,�) be an oriented Nambu–Poisson manifold of order n, with n � 3
and let p∗ : H ∗

NP (M) → H ∗(�n−1(M);C∞(M,R)) be the induced homomorphism
between the Nambu–Poisson cohomology of M and the Leibniz algebroid cohomology of
(�n−1(T ∗M), [[ , ]], #n−1) (see remark 4.1). Then, a direct computation, using (6.2) and (6.3),
proves that

p1(M̃�) = M�.

Thus, since p1 : H 1
NP (M) → H 1(�n−1(M);C∞(M,R)) is a monomorphism, it follows that

the modular class of (M,�) is null if and only if M̃� = 0.

For a regular Nambu–Poisson manifold, we have:

Theorem 6.3. Let (M,�) be an oriented m-dimensional regular Nambu–Poisson manifold of
order n, with n � 3. Then the modular class of (M,�) is null if and only if there exists a basic
volume with respect to the characteristic foliation D, that is, there exists µ ∈ �m−n(M) such
that µ �= 0 at every point of M and

i(Xf1...fn−1)µ = 0 LXf1 ...fn−1
µ = 0

for all f1, . . . , fn−1 ∈ C∞(M,R).

Proof. Let ν be a volume form on M and suppose that the modular class of M is null. Then,
there exists f ∈ C∞(M,R) such that

Mν
� = (−1)n−1#1(df ).

Therefore,

Mν
�(df1, . . . , dfn−1) = Xf1...fn−1(f ). (6.6)

Taking the volume form ν ′ = e−f ν and using (5.4), (6.1) and (6.6), we deduce that

Mν ′
� = 0. (6.7)

Now, we consider the (m − n)-form µ = i(�)(ν ′) = ,ν ′(�). Then, µ �= 0 at every point of
M and

i(Xf1...fn−1)µ = ,ν ′(� ∧ Xf1...fn−1) = 0.

Moreover, from (2.5), (6.1), (6.7) and lemma 5.1 we conclude that

LXf1 ...fn−1
µ = LXf1 ...fn−1

,ν ′(�)

= ,ν ′(LXf1 ...fn−1
�) + (divν ′ Xf1...fn−1),ν ′(�) = 0.

Conversely, suppose that there exists a basic volume µ with respect to D. Then,

i(Xf1...fn−1)µ = 0 LXf1 ...fn−1
µ = 0 (6.8)

for all f1, . . . , fn−1 ∈ C∞(M,R).
Let D = ∪x∈MD(x) → M be the vector subbundle of TM → M associated with D and

α̃ the section of the vector bundle �nD∗ → M defined as follows. If X1, . . . , Xn ∈ �(D),
α̃(X1, . . . , Xn) is the C∞-real valued function on M characterized by

X1 ∧ · · · ∧ Xn = α̃(X1, . . . , Xn)�.

Now, we extend α̃ to an n-form α on M such that

α(X1, . . . , Xn) = α̃(X1, . . . , Xn)
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for X1, . . . , Xn ∈ �(D). It is clear that

i(�)(α) = 1. (6.9)

Next, we consider the volume form ν on M given by

ν = α ∧ µ.

From (6.8) and (6.9) we have that

,ν(�) = µ. (6.10)

Thus, using (6.1), (6.8), (6.10), lemma 5.1 and the fact that µ �= 0 at every point, we conclude
that

Mν
� = 0. �

Example 6.4. (i) Suppose that N and P are oriented manifolds and that ν (respectively,
µ) is a volume form on N (respectively, P ). Denote by �ν the Nambu–Poisson structure on
N induced by the volume form ν (see example 2.2). �ν defines a regular Nambu–Poisson
structure on the product manifold M = N × P and, from theorem 6.3, it follows that the
modular class of (M,�ν) is zero. In fact, a direct computation proves that Mν∧µ

�ν
= Mν

�ν
= 0

and therefore (see [21]) Mν∧µ
�ν

= 0. In the same way, for a function f ∈ C∞(P,R) with
zeros, f�ν defines a singular Nambu–Poisson structure on the product manifold M and

Mν∧µ
f�ν

= fMν∧µ
�ν

+ (−1)n−1i(df )(�ν) = 0.

(ii) Let (g, [ , ]) be the simple Lie algebra of dimension three with basis {ξ, η, σ } satisfying

[ξ, η] = −2η [ξ, σ ] = 2σ [η, σ ] = ξ.

We consider a connected, simply connected, non-compact, simple Lie group G such that
the Lie algebra ofG is (g, [ , ]). From the basis {ξ, η, σ } one can obtain a basis of left-invariant
vector fields {X̃, Ỹ , Z̃} on G and if {α̃, β̃, γ̃ } is the dual basis of 1-forms, we have that

dα̃ = γ̃ ∧ β̃ dβ̃ = 2α̃ ∧ β̃ dγ̃ = −2α̃ ∧ γ̃ .

Now, suppose that S is a discrete subgroup such that the space N = S\G of right cosets
is a compact manifold (see section 4 of chapter II in [2]). Then, the vector fields {X̃, Ỹ , Z̃}
(respectively, the 1-forms {α̃, β̃, γ̃ }) induce a global basis {X, Y,Z} of vector fields on N

(respectively, a global basis {α, β, γ } of 1-forms on N ) and

dα = γ ∧ β dβ = 2α ∧ β dγ = −2α ∧ γ.

Denote by � the 3-vector on the product manifold M = N × S1 given by

� = X ∧ Z ∧ E

where E is the dual vector field of the length element of S1. It is easy to prove that � defines
a regular Nambu–Poisson structure of order three on M .

The characteristic distribution D of (M,�) is the foliation on M given by β = 0. Thus,
D is transversally orientable and the Godbillon–Vey class of D is the de Rham cohomology
class 4[α ∧ γ ∧ β] (for the definition of the Godbillon–Vey class of a transversally orientable
foliation, see [34, p 29, 30]; see also [16]). It is clear that [α ∧ γ ∧ β] �= 0 and therefore
we conclude that it is not possible to find a basic volume with respect to D (see [34, p 50]).
Consequently, from theorem 6.3, we deduce that the modular class of (M,�) is not null.
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Remark 6.5. Let M be an oriented manifold and D an oriented foliation on M of dimension
n � 3. Suppose that D = ⋃

x∈MD(x) → M is the vector subbundle of TM → M associated
with D and that � is a global section of the vector bundle �nD → M , � �= 0 at every point.
Then, � defines a regular Nambu–Poisson structure of order n on M and the characteristic
foliation of (M,�) is just D. Since M is an oriented manifold, the foliation D is transversally
orientable. Thus, if the Godbillon–Vey class of D is not null, it follows that the modular class
of (M,�) is not null.

6.2. Duality between the Nambu–Poisson cohomology and the canonical Nambu–Poisson
homology

If M is an oriented Nambu–Poisson manifold of order n, with n � 3, and ν is a volume form
on M , we will prove that, under certain conditions, one can define an interesting subcomplex
of the homology complex (V∗(M), δν). In addition, if the modular class of M vanishes, we
will show that there exists a duality between the homology of this subcomplex and the foliated
cohomology of (M,D), where D is the characteristic foliation of M .

Theorem 6.6. Let (M,�) be an oriented Nambu–Poisson manifold of order n, with n � 3,
and ν be a volume form on M . Then:

(a) #∗(�∗(M)) = ⊕n
k=0(#n−k(�

n−k(M))) defines a subcomplex of the homology complex
(V∗(M), δν) if and only if Mν

� ∈ #1(�
1(M)).

(b) If #∗(�∗(M)) is a subcomplex of (V∗(M), δν), then the homology of this subcomplex does
not depend on the chosen volume form.

(c) If the modular class of (M,�) is null then #∗(�∗(M)) defines a subcomplex of the
homology complex (V∗(M), δν) and

H̄ canNP
k (M) ∼= Hn−k(D)

for all k ∈ {0, . . . , n}, whereH ∗(D) is the foliated cohomology of (M,D) and H̄ canNP
∗ (M)

denotes the homology of the complex (#∗(�∗(M)), δν).

Proof.

(a) From (5.6), (6.4) and (6.5), we have that

i(α)δν(#k(β)) = divν(#n−1(β ∧ α)) + (−1)n−k#n(β ∧ dα)

= i(α)(i(β)Mν
� + (−1)n−1#k+1(dβ))

for all α ∈ �n−k−1(M) and β ∈ �k(M). Thus,

δν(#k(β)) = (−1)n−1#k+1(dβ) + i(β)Mν
�. (6.11)

Therefore, δν(#k(�k(M)) ⊆ #k+1(�
k+1(M)) for all k ∈ {0, . . . , n} if and only if

Mν
� ∈ #1(�

1(M)).
(b) Let ν ′ be another volume form onM . Then, there exists aC∞-real valued function f such

that f �= 0 at every point and ν ′ = f ν. We can suppose, without the loss of generality,
that f > 0. Thus, we can consider the isomorphisms

2k : #k(�
k(M)) → #k(�

k(M)) P �→ 1

f
P.

Since δν ′ ◦2k = 2k−1◦δν , it follows that the complexes (#∗(�∗(M)), δν) and (#∗(�∗(M)),
δν ′) are isomorphic.
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(c) If the modular class of M is null, there exists f ∈ C∞(M,R) such that (see (2.9))

Mν
� = #1((−1)n−1 df ). (6.12)

Consequently, from (i), one deduces that #∗(�∗(M)) defines a subcomplex of (V∗(M), δν).

On the other hand, using proposition 4.2, we can define the isomorphisms of C∞(M,R)-
modules

hk : �n−k(D) = �n−k(M)/ ker #n−k → #n−k(�
n−k(M)) hk([α]) = e−f #n−k(α).

From (6.2), (6.11) and (6.12) it follows that hk ◦ d̃ = (−1)n−1δν ◦ hk+1, where d̃ is the foliated
differential of (M,D). So, the above isomorphisms induce an isomorphism between the
cohomology group Hn−k(D) and the homology group H̄ canNP

k (M). �
Using remark 4.3 and theorems 6.3 and 6.6, we deduce that

Corollary 6.7. Let (M,�) be an oriented regular Nambu–Poisson manifold of order n, with
n � 3. If there exists a basic volume with respect to the characteristic foliation D of (M,�)

then

Hk
NP (M) ∼= Hk(D) ∼= H canNP

n−k (M)

for all k ∈ {0, . . . , n}.

7. A singular Nambu–Poisson structure

Consider on R
3 the 3-vector defined by

� = (x2
1 + x2

2 + x2
3 )

∂

∂x1
∧ ∂

∂x2
∧ ∂

∂x3
(7.1)

where (x1, x2, x3) denote the usual coordinates on R
3. The 3-vector � defines a singular

Nambu–Poisson structure of order three on R
3. Let ν be the volume form given by

ν = dx1 ∧ dx2 ∧ dx3.

A direct computation proves that

Xx1x2 = (x2
1 + x2

2 + x2
3 )

∂

∂x3

Xx1x3 = −(x2
1 + x2

2 + x2
3 )

∂

∂x2

Xx2x3 = (x2
1 + x2

2 + x2
3 )

∂

∂x1

and therefore (see (6.1))

Mν
� = 2x3

∂

∂x1
∧ ∂

∂x2
− 2x2

∂

∂x1
∧ ∂

∂x3
+ 2x1

∂

∂x2
∧ ∂

∂x3
.

Now, if the modular class of (R3,�) were null then there exists f ∈ C∞(R3,R) such that

i(α)Mν
� = #2α(f )

for all α ∈ �2(R3). Taking the 2-forms dx1 ∧ dx2, dx1 ∧ dx3, dx2 ∧ dx3 we would deduce that

2xj = (x2
1 + x2

2 + x2
3 )

∂f

∂xj
for all j = 1, 2, 3. (7.2)
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Then,

f|R3−{(0,0,0)} = ln(x2
1 + x2

2 + x2
3 ) + c with c ∈ R.

However, this is not possible because of f ∈ C∞(R3,R). Thus, the modular class of (R3,�)

is not null.
Next, we will prove that there is no duality between the Nambu–Poisson cohomology and

the canonical Nambu–Poisson homology of (R3,�). In fact, we will show that

H 1
NP (R

3) �∼= H canNP
2 (R3).

First, we compute H 1
NP (R

3). In order to do this, we will proceed as follows.
Since ker #2 = {0}, then

�2(R3) ∼= #2(�
2(R3)) = {(x2

1 + x2
2 + x2

3 )X/X ∈ X(R3)}.
This fact implies that one can identify the co-chains c1 : #2(�

2(R3)) → C∞(R3,R) of the
Nambu–Poisson cohomology complex with the 1-forms on R

3 using the isomorphism:

= : C1(�2(R3);C∞(R3,R)) → �1(R3) (c1 : �2(R3) → C∞(R3,R)) �→ α

such that α(X) = c1(β), where #2(β) = (x2
1 + x2

2 + x2
3 )X.

Under this identification the first Nambu–Poisson cohomology group H 1
NP (R

3) is the
quotient space

{α ∈ �1(R3)/(x2
1 + x2

2 + x2
3 ) dα − d(x2

1 + x2
2 + x2

3 ) ∧ α = 0}
{(x2

1 + x2
2 + x2

3 ) dg/g ∈ C∞(R3,R)} . (7.3)

Now, we consider the set

G =
{
g ∈ C∞(R3 − {(0, 0, 0)},R)/(x2

1 + x2
2 + x2

3 )
∂g

∂xi
∈ C∞(R3,R), for all i ∈ {1, 2, 3}

}
and the linear map

T : G → H 1
NP (R

3)

defined by T (g) = [(x2
1 + x2

2 + x3
3) dg]. It is clear that the kernel of this mapping is the space

C∞(R3,R). Moreover, T is an epimorphism. In fact, if [α] ∈ H 1
NP (R

3), from (7.3), we
deduce that in R

3 − {(0, 0, 0)}

d

(
α

x2
1 + x2

2 + x2
3

)
= 0.

But this implies that there exists g ∈ C∞(R3 − {(0, 0, 0)},R) such that
α

x2
1 + x2

2 + x2
3

= dg

and therefore

T (g) = [α].

Thus,

G
C∞(R3,R)

∼= H 1
NP (R

3). (7.4)

Next, we will prove that the quotient space G
C∞(R3,R)

is isomorphic to R. To do that, we
will use the following lemmas (a proof of the first lemma can be found in [30]).



3646 R Ibáñez et al

Lemma 7.1 (See [30]). Let P,Q be two polynomials of degree n, (n � 1) in the
indeterminates x1 and x2 such that satisfy

(x2
1 + x2

2 )

(
∂P

∂x2
− ∂Q

∂x1

)
= 2(Px2 − Qx1).

Then there exist two polynomials P̃ , Q̃ of degree n − 2 such that P and Q are written in the
following form:

P = ax1 + bx2 + (x2
1 + x2

2 )P̃ Q = bx1 + ax2 + (x2
1 + x2

2 )Q̃

where a, b are real constants and ∂P̃
∂x2

= ∂Q̃

∂x1
.

Lemma 7.2. Let A,B and C be three polynomials of degree n, (n � 1) in the indeterminates
x1, x2, x3, such that satisfy

(x2
1 + x2

2 + x2
3 )

(
∂A

∂x2
− ∂B

∂x1

)
= 2(Ax2 − Bx1)

(x2
1 + x2

2 + x2
3 )

(
∂A

∂x3
− ∂C

∂x1

)
= 2(Ax3 − Cx1)

(x2
1 + x2

2 + x2
3 )

(
∂B

∂x3
− ∂C

∂x2

)
= 2(Ax3 − Cx2).

(7.5)

Then there exist three polynomials Ã, B̃ and C̃ of degree n − 2 such that A,B and C are
written in the following form:

A = ax1 + (x2
1 + x2

2 + x2
3 )Ã

B = ax2 + (x2
1 + x2

2 + x2
3 )B̃

C = ax3 + (x2
1 + x2

2 + x2
3 )C̃

where a is a real constant and ∂Ã
∂x2

= ∂B̃
∂x1

, ∂Ã
∂x3

= ∂C̃
∂x1

and ∂B̃
∂x3

= ∂C̃
∂x2

.

Proof. It is sufficient to prove the result for the case when A, B and C are homogeneous
polynomials. If n = 1 is clear that A = ax1, B = ax2 and C = ax3. If n � 2 we proceed as
follows.

The polynomials A and B can be written as

A(x1, x2, x3) =
n∑

k=0

xk3Ak(x1, x2) B(x1, x2, x3) =
n∑

k=0

xk3Bk(x1, x2)

where Ai(x1, x2) and Bi(x1, x2) (i = 0, . . . , n) are homogeneous polynomials in the
indeterminates x1, x2.

From the first equality of (7.5) we deduce that

(x2
1 + x2

2 )

(
∂Ai

∂x2
− ∂Bi

∂x1

)
= 2(Aix2 − Bix1) i ∈ {0, 1} (7.6)

and for all r ∈ {2, . . . n},

(x2
1 + x2

2 )

(
∂Ar

∂x2
− ∂Br

∂x1

)
+

(
∂Ar−2

∂x2
− ∂Br−2

∂x1

)
= 2(Arx2 − Brx1). (7.7)
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Using (7.6) and lemma 7.1 we obtain that there exist Ã0, Ã1, B̃0 and B̃1 polynomials in the
indeterminates x1, x2 such that

Ai = (x2
1 + x2

2 )Ãi Bi = (x2
1 + x2

2 )B̃i

∂Ãi

∂x2
= ∂B̃i

∂x1

for i = 0, 1.
Now, from these facts and (7.7), we have that

(x2
1 + x2

2 )

(
∂(A2 − Ã0)

∂x2
− ∂(B2 − B̃0)

∂x1

)
= 2x2(A2 − Ã0) − 2x1(B2 − B̃0).

Applying again lemma 7.1 we deduce that there exist Ã2 and B̃2 polynomials in the
indeterminates x1 and x2 such that

A2 = Ã0 + (x2
1 + x2

2 )Ã2 B2 = B̃0 + (x2
1 + x2

2 )B̃2

with ∂Ã2
∂x2

= ∂B̃2
∂x1

.

Proceeding in a similar way we obtain a sequence of polynomials Ã0, . . . , Ãn, B̃0, . . . , B̃n

in the indeterminates x1 and x2 such that

Ai = (x2
1 + x2

2 )Ãi Bi = (x2
1 + x2

2 )B̃i

Ar = Ãr−2 + (x2
1 + x2

2 )Ãr Br = B̃r−2 + (x2
1 + x2

2 )B̃r

for i ∈ {0, 1} and for r ∈ {2, . . . , n}. Thus, the polynomials A and B can be written as

A = (x2
1 + x2

2 + x2
3 )

n∑
k=0

xk3 Ãk B = (x2
1 + x2

2 + x2
3 )

n∑
k=0

xk3 B̃k.

Using the same process we also deduce that the polynomial C can be written as

C = (x2
1 + x2

2 + x2
3 )

n∑
k=0

xk1 C̃k

where C̃k are polynomials in the indeterminates x2 and x3. �
This last lemma allows us to obtain the announced result.

Proposition 7.3. The quotient space G
C∞(R3,R)

is isomorphic to R.

Proof. Taking g ∈ G we have that the C∞ real-valued functions on R
3

g1 = (x2
1 + x2

2 + x2
3 )

∂g

∂x1
g2 = (x2

1 + x2
2 + x2

3 )
∂g

∂x2
g3 = (x2

1 + x2
2 + x2

3 )
∂g

∂x3

satisfy

(x2
1 + x2

2 + x2
3 )

(
∂g1

∂x2
− ∂g2

∂x1

)
= 2(x2g1 − x1g2)

(x2
1 + x2

2 + x2
3 )

(
∂g1

∂x3
− ∂g3

∂x1

)
= 2(x3g1 − x1g3)

(x2
1 + x2

2 + x2
3 )

(
∂g2

∂x3
− ∂g3

∂x2

)
= 2(x3g2 − x2g3).

(7.8)

Then, for arbitrary n � 2, let consider the Taylor expansions of order n + 1 at the origin of the
functions g1, g2, g3. We write these Taylor expansions as g1 = An +R1,n, g2 = Bn +R2,n and
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g3 = Cn +R3,n where An,Bn, Cn are polynomials of degree n which satisfy the conditions of
lemma 7.2 and Ri,n are the remainder terms. Denote by [k(x1, x2, x3)](0,0,0) the formal Taylor
expansion at the origin of k ∈ C∞(R3,R). Then there exists a ∈ R such that

[g1(x1, x2, x3) − ax1](0,0,0) = (x2
1 + x2

2 + x2
3 )A(x1, x2, x3)

[g2(x1, x2, x3) − ax2](0,0,0) = (x2
1 + x2

2 + x2
3 )B(x1, x2, x3)

[g3(x1, x2, x3) − ax3](0,0,0) = (x2
1 + x2

2 + x2
3 )C(x1, x2, x3)

where A(x1, x2, x3), B(x1, x2, x3) and C(x1, x2, x3) are suitable formal power series. Using
Borel’s theorem we have that there exist α, β, γ ∈ C∞(R3,R) such that

[α(x1, x2, x3)](0,0,0) = A(x1, x2, x3)

[β(x1, x2, x3)](0,0,0) = B(x1, x2, x3)

[γ (x1, x2, x3)](0,0,0) = C(x1, x2, x3).

Note that the formal Taylor expansions at the origin of the functions

α1 = g1 − ax1 − (x2
1 + x2

2 + x2
3 )α

β1 = g2 − ax2 − (x2
1 + x2

2 + x2
3 )β

γ1 = g3 − ax3 − (x2
1 + x2

2 + x2
3 )γ

vanish. Therefore, α1

(x2
1 +x2

2 +x2
3 )

, β1

(x2
1 +x2

2 +x2
3 )

and γ1

(x2
1 +x2

2 +x2
3 )

are C∞ real-valued functions on R
3.

Let us consider the C∞ real-valued functions on R
3

h1 = α +
α1

(x2
1 + x2

2 + x2
3 )

h2 = β +
β1

(x2
1 + x2

2 + x2
3 )

h3 = γ +
γ1

(x2
1 + x2

2 + x2
3 )
.

Then, using (7.8) and the fact that

gi = axi + (x2
1 + x2

2 + x2
3 )hi i = 1, 2, 3

we obtain that

∂h1

∂x2
− ∂h2

∂x1
= ∂h1

∂x3
− ∂h3

∂x1
= ∂h2

∂x3
− ∂h3

∂x2
= 0. (7.9)

Therefore,

dg =
(

3∑
i=1

gi

x2
1 + x2

2 + x2
3

dxi

)
|R3−{(0,0,0)}

=
(

d

(
a

2
ln(x2

1 + x2
2 + x2

3 )

)
+

3∑
i=1

hi dxi

)
|R3−{(0,0,0)}

.

(7.10)

On the other hand, using (7.9) we deduce that h1 dx1 + h2 dx2 + h3 dx3 is a closed 1-form
on R

3 and, since H 1
dR(R

3) = {0}, we conclude that there exists ψ ∈ C∞(R3,R) such that
h1 dx1 + h2 dx2 + h3 dx3 = dψ . Substituting in (7.10) we have that

g − 1
2a ln(x2

1 + x2
2 + x2

3 ) = ψ|R3−{(0,0,0)} + c with c ∈ R.

Consequently,

[g] =
[
a

2
ln(x2

1 + x2
2 + x2

3 )

]
with a ∈ R.

This completes the proof. �
From (7.4) and proposition 7.3, we deduce that
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Proposition 7.4. Let � be the Nambu–Poisson structure on R
3 given by (7.1). Then,

H 1
NP (R

3) ∼= R.

Remark 7.5. In [29] the author has generalized the above result for germs at 0 of n-vectors
� = f ∂

∂x1
∧ · · · ∧ ∂

∂xn
on R

n or C
n, where f is a quasihomogeneous polynomial of finite

codimension. In fact, in this paper all Nambu–Poisson cohomology groups for this type of
structures are computed.

On the other hand, since ker #1 = {0}, it follows that

Vk
t (R

3,�) = Vk(R3)

for all k. Thus, the canonical Nambu–Poisson homology of (R3,�) is dual of the de Rham
cohomology. In particular, H canNP

2 (R3) ∼= H 1
dR(R

3) = {0}.
This implies that H 1

NP (R
3) �∼= H canNP

2 (R3) and therefore the duality between the Nambu–
Poisson cohomology and the canonical Nambu–Poisson homology does not hold.

Remark 7.6.

(i) If #r : �r(R3) → V3−r (R3), r = 1, 2, 3, is the induced homomorphism by the Nambu–
Poisson structure � on R

3, then, it is clear that #r is a monomorphism. Therefore, if D is
the characteristic foliation of (R3,�), we have that the foliated cohomology of (R3,D)

is isomorphic to the de Rham cohomology. In particular, H 1
NP (R

3) �∼= H 1(D) = {0}.
Consequently, the Nambu–Poisson cohomology and the foliated cohomology are not
isomorphic.

(ii) A direct computation shows that Mν
� �∈ #1(�

1(R3)). Thus, #∗(�∗(R3)) =⊕
k=0,...,3 #k(�k(R3)) is not a subcomplex of the homology complex (V∗(R3), δν) (see

theorem 6.6).
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